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V(4 +x)

f(x) = x| <a.

Find the binomial expansion of f (x) in ascending powers of x, up to and including the term in x°.
Give each coefficient as a simplified fraction.

(6)
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Figure 1

Figure 1 shows the finite region R bounded by the x-axis, the y-axis and the curve with equation

y =3 cos 5j,ogxs 3—”.
3 2

The table shows corresponding values of x and y for y = 3 cos (%J :

3z 3z 97 3z

X 0 — — — —
8 4 8 2
y 3 2.77164 2.12132 0

(a) Copy and complete the table above giving the missing value of y to 5 decimal places.
1)

(b) Using the trapezium rule, with all the values of y from the completed table, find an
approximation for the area of R, giving your answer to 3 decimal places.

(4)
(c) Use integration to find the exact area of R.

©)
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4-2x A B C
f(x) = = + + :
x+D)(x+D)(x+3) (2x+1) (x+1) (x+3)

(a) Find the values of the constants A, B and C.

(4)
(b) (i) Hence find Jf(x) dx.
@)
2
(i) Find J f(x) dx inthe form In k, where k is a constant.
0
3)
The curve C has the equation ye 2* = 2x + y°.
. dy .
(a) Find ™ in terms of x and y.
X
()

The point P on C has coordinates (0, 1).

(b) Find the equation of the normal to C at P, giving your answer in the form ax + by + ¢ = 0,
where a, b and c are integers.
(4)
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Figure 2

Figure 2 shows a sketch of the curve with parametric equations

X=2cos2t, y=6sint, Ostsg.

(a) Find the gradient of the curve at the point where t = %

(4)
(b) Find a cartesian equation of the curve in the form
y=f(x), k<x<Kk,
stating the value of the constant k.
(4)
(c) Write down the range of f(x).
)
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6. (a) Find J\/(S—x) dx .

0 | 5

Figure 3
Figure 3 shows a sketch of the curve with equation

y=(Xx-1V(5-x), 1<x<5

(b) (i) Using integration by parts, or otherwise, find J(x ~-DV(E-x) dx.

(ii) Hence find J (x-)V(GB-x) dx..

T w

)

(4)

)
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Relative to a fixed origin O, the point A has position vector (8i + 13j — 2k), the point B has
position vector (10i + 14j — 4k), and the point C has position vector (9i + 9j + 6k).

The line | passes through the points A and B.

(a) Find a vector equation for the line I.

3)
(b) Find ‘@ ‘ .
(2

(c) Find the size of the acute angle between the line segment CB and the line I, giving your
answer in degrees to 1 decimal place.

3)
(d) Find the shortest distance from the point C to the line .

@)
The point X lies on I. Given that the vector CX is perpendicular to I,
(e) find the area of the triangle CXB, giving your answer to 3 significant figures.

@)
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(a) Using the identity cos 20 = 1 —2sin’ 4, find Jsin2 6 do.
)

_‘|_' &

S

0

1
V3
Figure 4

Figure 4 shows part of the curve C with parametric equations

x=tand, y=2sin 26, 039<%.

The finite shaded region S shown in Figure 4 is bounded by C, the line x = 1 and the x-axis.

V3

This shaded region is rotated through 2z radians about the x-axis to form a solid of revolution.

(b) Show that the volume of the solid of revolution formed is given by the integral

5
kj sin?@ dé,

0

where k is a constant.
(5)

(c) Hence find the exact value for this volume, giving your answer in the form pz? + qaV3,
where p and q are constants.

©)
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EDEXCEL CORE MATHEMATICS C4 (6666) — JUNE 2009

FINAL MARK SCHEME

Question Scheme Marks
Number
1 _1
f(x)= =(4+x)?
1. (%) N (4+x) M1
(4t ) T ) or B1
2V(1+..)
_1)(_3 2 (_1)(_3)(_5 3
_ 1 (_%) X +( 2)( 2)(5} +( 2)( 2)( 2)(5} + M1 A1ft
2 4 3! 4
ft their (EJ
4
:l—ix,+i I Al, Al (6)
2 16 256 2048
(6 marks)
2. (a) 1.14805 awrt 1.14805 B1 (1)
1 3«
b Ax=x—( ... B1
(b) <5 ()
= .. (3+2(2.77164+2.12132+1.14805)+0) 0 can be implied M1
= i—g(S+2(2.77164+2.12132+1.14805)) ft their (a) Alft
3
=E><15.08202 .. =8.884 cao Al (4)
y 3sin(§]
Xy = M1 Al
(© J3cos(3jdx 1
3
=9sin(fj
3
3z
(x| 2
A= 9sm(§) =9-0=9 cao Al (3)
0
(8 marks)




EDEXCEL CORE MATHEMATICS C4 (6666) — JUNE 2009 FINAL MARK SCHEME

Question

Number Scheme Marks
f(x)= 4-2x __A B _C
@ (2x+1)(x+1)(x+3)  2x+1 x+1 x+3
4—-2x=A(x+1)(x+3)+B(2x+1)(x+3)+C(2x+1)(x+1) M1
A method for evaluating one constant M1
x—>-1, 5=A(})(3) = A=4 any one correct constant Al
x—>-1, 6=B(-1)(2) = B=-3
x—-3, 10=C(-5)(-2) = C=1 all three constants correct Al 4)
4 3 1
i — d
(b) () J(2x+1 x+1+x+3) X
4
=EIn(2x+1)—3|n(x+1)+In(x+3)+C Al two In terms correct M1 Alft
All three In terms correct and “+C” ; ft constants Alft  (3)

(i) | [2Mn(2x+1)-3In(x+1)+In(x+3)];

=(2In5-3In3+In5)—(2In1-3In1+In3) M1
=3In5-4In3
53
125
=|n| =— Al 3
(10 marks)




EDEXCEL CORE MATHEMATICS C4 (6666) — JUNE 2009

FINAL MARK SCHEME

ﬁuestlon Scheme Marks
umber
4. () e d—y—Zye*2X = 2+2yﬂ A1l correct RHS M1 Al
dx dx
d -2X -2X dy -2X
—(ye =g —=-2ye
dx(y ) v B1
( g 2y) dy =2+2ye ™ M1
dx
dy 2+2ye™
-y Al
dx r_2y ®)
dy 2+2¢°
b At P, =—4 M1
(b) dx e°-2
. , o1
Using mm'=-1 m ZZ M1
1
y—1==(x-0) M1
4
X—4y+4=0 or any integer multiple Al 4)
(9 marks)
5. () %_—4sm 2t, dy =6cost B1, B1
_ 6cost ( j M1
dx ~4sin2t 4sint
V2 3 V3 .
Att==—, =— =—— accept equivalents, awrt —0.87
3 ax B > pteq Al 4)
(b) Use of cos2t =1—2sin’t M1
cosZt:E, sint:X
2 6
X 2
—:1—2(¥j M1
2 6
Leading to y=~(18-9%) (=3(2-x)) cao Al
—2<x<2 k= B1 4)
(c) 0<f(x)<6 either 0<f(x) or f(x)<6 B1
Fully correct. Accept 0<y <6, [0, 6] B1 )
(10 marks)




EDEXCEL CORE MATHEMATICS C4 (6666) — JUNE 2009

FINAL MARK SCHEME

ﬁﬂﬁgg? Scheme Marks
6. (a) jv(ss—x)dx:j(s—x)%dx:(5:;()2 (+C) M1AL (2)
(:—%(5—x)3+cj
10 [(x—l)v(5—x)dx=—3(x—1)(5—x)5+3f(5—x)3dx M1 ALft
3 3
= +§x(5::()2 (+C) M1
=——(x—1)(5—x)3—%(5—x)‘5’ (+C) Al (4)
(ii) [—E(X—l)(S—X)g—%(S—X)g} =(0—0)—(0-i><4?j
:%(:8§z8.53) awrt 8.53 M1Al (2)
15\ 15
(8 marks)




EDEXCEL CORE MATHEMATICS C4 (6666) — JUNE 2009

FINAL MARK SCHEME

Rumber scheme s
10 8 2 —2
7. (@ AB=0B-0OA=|14 |-| 13 |= or BA=| -1 M1
—4) (-2) (-2 2
8 2 10 2
r={13 |+4| 1 |orr={14 |+4| 1 accept equivalents M1 Alft (3)
-2 -2 —4 -2
10 9 1 -1
—4 6 -10 10
CB=(I’+5 +(-10)°)=V(126) (=3V14~112)  awrt112 MLAL (2)
©) CB.AB = ‘CBHAB‘COS&
(£)(2+5+20) =126v9cos M1 Al
0050:i = 0~36.7° awrt 36.7° Al (3)
14
(d) 4 _sine M1 Alft
! V126
d =3V5(=6.7) awrt 6.7 Al (3)
(e) BX?=BC’-d*=126-45=81 M1
I CBX :%XBXxd :%xgstzzw‘r’(zso.z) awrt 30.1 or 30.2 M1AL (3)
(14 marks)
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FINAL MARK SCHEME

ﬁﬂﬁgg? Scheme Marks
8.  (a Isinzede:%I(l—cosze)dezéé’—%sin 20 (+C) M1AL (2)
X=tand = %:secze
do
(b) 7Z'j y? dXZ?Z'J.yzg—zd@:ﬂ"[(ZSin 29)2se029d0 M1 Al
2x2sin 6cos )’
_ J‘( X S|n2cos ) " M1
cos” @
=167zjsin29d9 k=167 Al
Xx=0 = tand=0 = 6=0 x—iztan&—ij&’—Z B1 5
) T 13 6 ©)
©) [v =167zj ssinzedeJ
0
Y, =167r[39—3'” 2‘9} ° [ M1
2 0
=167 (i—lsinzj—(O—O) Use of correct limits M1
12 4 3
7 N3) 4, 4
=167 =2 |=Z42_2743 =—,Q=-2 Al 3
(12 8) 3" P=3 4 ®)
(10 marks)




